Skip to content

Monitoring

Burn-off efficiency


A common figure of merit used to quantify the condition of the LHC is the lifetime of the beam. It provides important information for the LHC as a storage ring, but does not inform about the luminosity production of the collider. Instead, it is more appropriate to define the instantaneous burn-off efficiency \eta, following:

\eta \equiv \left[\frac{dN}{dt}\right]_\text{bo}\bigg/ \left[\frac{dN}{dt}\right]_\text{total} = \frac{\sigma_\text{pp} \mathcal{L}}{\sigma_\text{pp} \mathcal{L} + R_\ell N}

where \left[\tfrac{dN}{dt}\right]_\text{total} and \left[\tfrac{dN}{dt}\right]_\text{bo} are the total and burn-off losses, N is the beam intensity, \mathcal{L} = \sum_{\text{IPs}}\mathcal{L}_\text{IP} is the total luminosity of the collider, R_\ell is the loss rate from non-burn-off losses and \sigma_\text{pp} = 80\ \text{mb} is the accepted value for the cross section of proton-proton collisions at 7 TeV. The efficiency is similar to the effective cross section \sigma_\text{eff}= \frac{1}{\mathcal{L}}\left[\sigma_\text{pp} \mathcal{L} + R_\ell N\right] used in previous work. One can note that \eta = \sigma_\text{pp}/\sigma_\text{eff}. To optimise luminosity production, a well-behaved machine needs to lose most of its protons to collisions, i.e. \eta \to 1. Assuming small R_\ell over a short period of time compared to the length, T, of luminosity production for a fill, one can show that the relative gain in integrated luminosity, G, scales with the integral of \eta(t), or more precisely: $$ G \sim -r_0\left[\frac{r_0 T + 2}{r_0 T + 1}\right] \cdot \int_0^T\left(\frac{1}{\eta} - 1\right) dt $$

where r_0 = \sigma_\text{pp} \mathcal{L}_0/N_0 is a constant which depends on the initial conditions (with units of \unit{s^{-1}}). Alternatively, one can see that \left(\frac{1}{\eta} - 1\right) = \frac{R_\ell N}{\sigma_\text{pp} \mathcal{L}} corresponds to the luminosity-normalized losses of the machine. For example, if \eta = 0.5 for 30 minutes in typical LHC conditions (N_0 = 2400\cdot 1.3\times 10^{11}\ \text{p}^+ and \mathcal{L}_0 = 2\times (2.2\times10^{34}\ \text{Hz/cm}^2)), the change in integrated luminosity is G \sim -3\ \% for T=10\ \text{h}. Hence, the experimental efficiency is to be discussed on the basis of its deviation from \eta=1 over a certain period of time.


Special fills

Fill Comments Efficiency B-by-B signature
8348 MD8043, Nov 2022 DBLM | BCTF DBLM | BCTF
8462 MD7003, Nov 2022 DBLM | BCTF DBLM | BCTF
8469 MD7003, Nov 2022 DBLM | BCTF DBLM | BCTF
8470 MD7003, Nov 2022 DBLM | BCTF DBLM | BCTF

Fill-by-fill monitoring

Extra fill-by-fill summary data can be found on the BPT Dashboard

Fill Wires status \beta^* Bunches B1/B2 Efficiency B-by-B signature
8685 OFF 30.0 cm 411/411 DBLM | BCTF DBLM | BCTF
8686 ON 30.0 cm 399/399 DBLM | BCTF DBLM | BCTF
8690 ON 30.0 cm 399/399 DBLM | BCTF DBLM | BCTF
8695 ON 30.0 cm 911/911 DBLM | BCTF DBLM | BCTF
8696 ON 30.0 cm 999/999 DBLM | BCTF DBLM | BCTF
8701 ON 30.0 cm 999/999 DBLM | BCTF DBLM | BCTF
8723 ON 30.0 cm 399/399 DBLM | BCTF DBLM | BCTF
8725 ON 30.0 cm 999/999 DBLM | BCTF DBLM | BCTF
8729 ON 30.0 cm 1163/1163 DBLM | BCTF DBLM | BCTF
8730 ON 30.0 cm 1163/1163 DBLM | BCTF DBLM | BCTF
8731 OFF 30.0 cm 1818/1818 DBLM | BCTF DBLM | BCTF
8736 ON 30.0 cm 1818/1818 DBLM | BCTF DBLM | BCTF
8738 ON 30.0 cm 1818/1818 DBLM | BCTF DBLM | BCTF
8739 ON 30.0 cm 1818/1818 DBLM | BCTF DBLM | BCTF
8741 OFF 30.0 cm 1903/1903 DBLM | BCTF DBLM | BCTF
8746 ON 30.0 cm 2374/2374 DBLM | BCTF DBLM | BCTF
8754 ON 30.0 cm 2374/2374 DBLM | BCTF DBLM | BCTF
8771 ON 30.0 cm 2374/2374 DBLM | BCTF DBLM | BCTF
8773 ON 30.0 cm 2374/2374 DBLM | BCTF DBLM | BCTF
8775 ON 30.0 cm 2374/2374 DBLM | BCTF DBLM | BCTF
8786 ON 30.0 cm 2374/2374 DBLM | BCTF DBLM | BCTF
8804 OFF 30.0 cm 2374/2374 DBLM | BCTF DBLM | BCTF
8822 ON 30.0 cm 2358/2358 DBLM | BCTF DBLM | BCTF
8850 OFF 30.0 cm 705/705 DBLM | BCTF DBLM | BCTF
8853 OFF 30.0 cm 1195/1195 DBLM | BCTF DBLM | BCTF
8858 OFF 30.0 cm 1650/1650 DBLM | BCTF DBLM | BCTF
8860 ON 30.0 cm 1886/1886 DBLM | BCTF DBLM | BCTF
8863 OFF 30.0 cm 1650/1650 DBLM | BCTF DBLM | BCTF
8865 ON 30.0 cm 1650/1650 DBLM | BCTF DBLM | BCTF
8870 OFF 30.0 cm 1886/1886 DBLM | BCTF DBLM | BCTF
8873 OFF 30.0 cm 2358/2358 DBLM | BCTF DBLM | BCTF
8877 ON 30.0 cm 2358/2358 DBLM | BCTF DBLM | BCTF
8880 OFF 30.0 cm 2358/2358 DBLM | BCTF DBLM | BCTF
8882 OFF 30.0 cm 2358/2358 DBLM | BCTF DBLM | BCTF
8885 ON 30.0 cm 2358/2358 DBLM | BCTF DBLM | BCTF
8887 ON 30.0 cm 2358/2358 DBLM | BCTF DBLM | BCTF
8891 ON 30.0 cm 2358/2358 DBLM | BCTF DBLM | BCTF
8894 OFF 30.0 cm 2358/2358 DBLM | BCTF DBLM | BCTF
8895 OFF 30.0 cm 2358/2358 DBLM | BCTF DBLM | BCTF
8896 ON 30.0 cm 2358/2358 DBLM | BCTF DBLM | BCTF
8901 OFF 30.0 cm 2358/2358 DBLM | BCTF DBLM | BCTF
9017 OFF 30.0 cm 399/399 DBLM | BCTF DBLM | BCTF
9019 OFF 30.0 cm 911/911 DBLM | BCTF DBLM | BCTF
9022 OFF 30.0 cm 1178/1178 DBLM | BCTF DBLM | BCTF
9023 OFF 30.0 cm 1886/1886 DBLM | BCTF DBLM | BCTF
9029 OFF 30.0 cm 2358/2358 DBLM | BCTF DBLM | BCTF
9031 OFF 30.0 cm 2358/2358 DBLM | BCTF DBLM | BCTF
9035 ON 30.0 cm 2464/2464 DBLM | BCTF DBLM | BCTF
9036 ON 30.0 cm 2464/2464 DBLM | BCTF DBLM | BCTF
9043 ON 30.0 cm 2464/2464 DBLM | BCTF DBLM | BCTF
9044 ON 30.0 cm 2464/2464 DBLM | BCTF DBLM | BCTF
9045 OFF 30.0 cm 2464/2464 DBLM | BCTF DBLM | BCTF
9046 ON 30.0 cm 2464/2464 DBLM | BCTF DBLM | BCTF
9049 OFF 30.0 cm 2464/2464 DBLM | BCTF DBLM | BCTF
9050 OFF 30.0 cm 2358/2358 DBLM | BCTF DBLM | BCTF
9057 ON 30.0 cm 2464/2464 DBLM | BCTF DBLM | BCTF
9063 ON 30.0 cm 2464/2464 DBLM | BCTF DBLM | BCTF
9070 ON 30.0 cm 2464/2464 DBLM | BCTF DBLM | BCTF
9072 ON 30.0 cm 2464/2464 DBLM | BCTF DBLM | BCTF